Abstract
This article presents the design of a control algorithm based on Artificial Neural Networks (ANNs) applied to a lower-limb exoskeleton, which is aimed to carry out walking trajectories during lower-limb rehabilitation. The interaction between the patient and the exoskeleton leads to model uncertainties and external disturbances that are always present. For this reason, the proposed control considers that the non-linear part of the model is unknown and is perturbed by external disturbances, which are estimated by an active disturbance rejection control via Artificial Neural Networks. To validate the proposed approach, a numerical simulation and an experimental implementation of the ANN-Controller are developed.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.