Abstract

AbstractThe static frequency converter (SFC) in a pumped storage power plant often causes harmonic problems in the dragging processes, which may lead to the false operation of automatic devices in the power station, and even damage to the power equipment. These harmonics caused by SFC contain both characteristic and non‐characteristic degrees, and the components are more complex. Hence, the existing harmonic suppression methods using active power filter or passive power filter compensation all have some problems. The SFC starting control strategy based on linear active disturbance rejection control (LADRC) is proposed here to reduce the non‐characteristic harmonics. First, the factors affecting the non‐characteristic harmonic content are analysed, and a mathematical model of the conventional SFC starting transfer function is established. On this basis, the LADRC controller is used as the speed loop of SFC starting to replace the proportional integral (PI) controller. The stability is judged by drawing the Bode plot and the zero‐pole plot. Finally, a Matlab/Simulink simulation model of LADRC‐based SFC starting is established in a pumped storage power plant with actual parameters, and simulation accurate measurements verify the effectiveness of the proposed control strategy for non‐characteristic harmonic current suppression.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.