The clique number of a random graph in the Erdös–Rényi model [Formula: see text] yields a random variable which takes values asymptotically almost surely (as [Formula: see text]) within one of an explicit logarithmic function [Formula: see text]. We show that random graphs have, asymptotically almost surely, arbitrarily many pairwise disjoint cliques with [Formula: see text] vertices. Such a result is motivated by, and applied to, the multi-tasking version of Farber’s topological model to study the motion planning problem in robotics. Indeed, we study the behavior of all the higher topological complexities of Eilenberg–MacLane spaces of type [Formula: see text], where [Formula: see text] is a random right angled Artin group.
Read full abstract