Abstract

In this paper, we consider two decomposition schemes for the graph theoretical description of the axial Multidimensional Assignment Problem (MAP). The problem is defined as finding n disjoint cliques of size m with minimum total cost in Km×n, which is an m-partite graph with n elements per dimension. Even though the 2-dimensional assignment problem is solvable in polynomial time, extending the problem to include n≥3 dimensions renders it \(\mathcal{NP}\)-hard. We propose two novel decomposition schemes for partitioning a MAP into disjoint subproblems, that can then be recombined to provide both upper and lower bounds to the original problem. For each of the partitioning schemes, we investigate and compare the efficiency of distinct exact and heuristic methodologies, namely augmentation and partitioning. Computational results for the methods, along with a hybrid one that consists of both partitioning schemes, are presented to depict the success of our approaches on large-scale instances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.