Abstract
A graph G=(V,E) is partitionable if there exists a partition {A,B} of V such that A induces a disjoint union of cliques (i.e., G[A] is P3-free) and B induces a triangle-free graph (i.e., G[B] is K3-free). In this paper we investigate the computational complexity of deciding whether a graph is partitionable. The problem is known to be NP-complete on arbitrary graphs. Here it is proved that if a graph G is bull-free, planar, perfect, K4-free or does not contain certain holes then deciding whether G is partitionable is NP-complete. This answers an open question posed by Thomassé, Trotignon and Vušković. In contrast a finite list of forbidden induced subgraphs is given for partitionable cographs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.