The proliferation of emerging pollutants (EPs), encompassing a range of substances such as phthalates, phenolics, pharmaceuticals, pesticides, personal care products, surfactants, and disinfection agents, has become a significant global concern due to their potential risks to the environment and human well-being. Over the past two decades, numerous research studies have investigated the presence of EPs in wastewater and aquatic ecosystems, with the United States Environmental Protection Agency (USEPA) categorizing these newly introduced chemical compounds as emerging contaminants due to their poorly understood impact. EPs have been linked to adverse health effects in humans, including genotoxic and cytotoxic effects, as well as conditions such as obesity, diabetes, cardiovascular disease, and reproductive abnormalities, often associated with their estrogenic action. Microalgae have shown promise in the detoxification of both inorganic and organic contaminants, and several large-scale microalgal systems for wastewater treatment have been developed. However, the progress of algal bioremediation can be influenced by accidental contaminations and operational challenges encountered in pilot-scale research. Microalgae employ various processes, such as bioadsorption, biouptake, and biodegradation, to effectively remediate EPs. During microalgal biodegradation, complex chemical compounds are transformed into simpler substances through catalytic metabolic degradation. Integrating algal bioremediation with existing treatment methodologies offers a viable approach for efficiently eliminating EPs from wastewater. This review focuses on the use of algal-based biological remediation processes for wastewater treatment, the environmental impacts of EPs, and the challenges associated with implementing algal bioremediation systems to effectively remove emerging pollutants.
Read full abstract