Abstract

AimThe objective of this study was to develop nanostructured gels as biocompatible intracanal disinfectants by one-step microwave radiation-assisted synthesis. MethodsPolyvinyl alcohol (PVA) and polyvinyl pyrrolidone (PVP) were used as a support network, and polyethylene glycol (PEG) was used as a reducing agent. The gels were characterized by measuring the swelling ratio (SR) and rheological properties and by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and atomic force microscopy (AFM). The antibacterial effects of each gel were evaluated against the endodontic clinical strain Enterococcus faecalis. Then, the viability of the 21-day mature multispecies bacterial biofilm was assessed using confocal microscopy in an ex vivo model, where the biofilm was exposed to the mix of nanogels. The cell proliferation, viability, and morphology of human periodontal ligament (HPDL) cells were quantified using a real-time IncuCyte® S3 Live-Cell System. Viability was measured by confocal microscopy using an ex vivo model exposing a 21-day mature multispecies bacterial biofilm to the mix of nanogels. ResultsThe antibacterial activity of the gels coincided with the superficial characterization and the solubility of the gel in the growth medium. Gels with higher viscosity (327.85-980.58 Pa s), higher dissolution (42-70%SR), and lower porosity (no porosity and 611.63 nm) showed excellent antibacterial activity against E. faecalis. Despite their physicochemical characteristics, CuNPs gels showed greater effectiveness against E. faecalis.These nanostructured gels with high PVA concentrations promote HPDL cells proliferation while still exerting antibacterial properties. Mix of nanogels showed an increase non-viable cells biomass from at of application. ConclusionsThe use of biocompatible polymers influences the physicochemical, bactericidal, and cytotoxic response, making these materials potential disinfectant agents against resistant bacteria with good biocompatibility and improved HPDL cells proliferation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.