We demonstrate an efficient wavelength-selectable output in the attractive deep-red spectral region from an intracavity frequency converted Nd:YLF/KGW Raman laser. Driven by an acousto-optic Q-switched 1314 nm Nd:YLF laser, two first-Stokes waves at 1461 and 1490 nm were generated owing to the bi-axial properties of KGW crystal. By incorporating intracavity sum-frequency generation and second-harmonic generation with an angle-tuned bismuth borate (BIBO) crystal, four discrete deep-red laser emission lines were yielded at the wavelengths of 692, 698, 731, and 745 nm. Under the incident pump power of 50 W and the repetition rate of 4 kHz, the maximum average output powers of 2.4, 2.7, 3.3, and 3.6 W were attained with the pulse durations of 3.4, 3.2, 4.3, and 3.7 ns, respectively, corresponding to the peak powers up to 177, 209, 190, and 245 kW. The results indicate that the Nd:YLF/KGW Raman laser combined with an angle-adjusted BIBO crystal provides a reliable and convenient approach to achieve the selectable multi-wavelength deep-red laser with short pulse duration and high peak power.
Read full abstract