The ongoing shift toward clean, sustainable energy is a primary driving force behind hydrogen fuel research. Safe and effective storage of hydrogen is a major challenge (particularly for mobile applications) and requires a detailed understanding of the atomic level interactions of hydrogen with its host materials. The light mass of hydrogen, however, implies that quantum effects are important, so a quantum dynamical treatment is required to properly account for these effects in computational simulations. As one such example, we describe herein the hydrogen exchange dynamics between a hydride and a dihydrogen ligand in the [FeH(H2)(PH3)4]+ model complex. A global three-dimensional (3D) potential energy surface (PES) was constructed by fitting to and interpolating from a discrete set of grid points computed using density functional theory; exact quantum dynamical calculations were then carried out on the 3D PES using discrete variable representation basis sets. Energy levels and their quantum tunneling splittings were computed up to 3000 cm-1 above the ground state. Within that energy range, all three fundamentals have been identified using wave function plots, as well as the first three overtones of the exchange (reaction coordinate) motion and several of its combination bands. From the tunneling splittings, the Boltzmann-averaged tunneling rates were computed. The Arrhenius plot of the total exchange rate shows a clear transition around 150 K, below which the activation energy is essentially zero and above which it is less than half of the electronic structure barrier. This indicates that exchange rates are governed by quantum tunneling throughout the relevant temperature range with the low-temperature regime dominated by a single quantum (ground) state. This work is the first-ever fully quantum dynamical study to investigate the hydrogen exchange dynamics between hydride and dihydrogen ligands coordinated to a transition-metal complex.
Read full abstract