Abstract

The discrete variable representation (DVR) basis is nearly optimal for numerically representing wave functions in nuclear physics: Suitable problems enjoy exponential convergence, yet the Hamiltonian remains sparse. We show that one can often use smaller basis sets than with the traditional harmonic oscillator basis, and still benefit from the simple analytic properties of the DVR bases which requires no overlap integrals, simply permit using various Jacobi coordinates, and admit straightforward analyses of the ultraviolet and infrared convergence properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call