Abstract

Employing the neural network framework, we obtain empirical fits to the electron-scattering cross sections for carbon over a broad kinematic region, extending from the quasielastic peak through resonance excitation to the onset of deep-inelastic scattering. We consider two different methods of obtaining such model-independent parametrizations and the corresponding uncertainties: based on the bootstrap approach and the Monte Carlo dropout approach. In our analysis, the χ2 defines the loss function, including point-to-point and normalization uncertainties for each independent set of measurements. Our statistical approaches lead to fits of comparable quality and similar uncertainties of the order of 7%. To test these models, we compare their predictions to test datasets excluded from the training process and theoretical predictions obtained within the spectral function approach. The predictions of both models agree with experimental measurements and theoretical calculations. We also perform a comparison to a dataset lying beyond the covered kinematic region, and find that the bootstrap approach shows better interpolation and extrapolation abilities than the one based on the dropout algorithm. Published by the American Physical Society 2024

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call