Abstract
The use of discrete variable representation (DVR) basis sets within ab initio molecular dynamics calculations allows the latter to be performed with converged energies and, more importantly, converged forces. In this paper, we show how to carry out ab initio molecular dynamics calculations in the isothermal-isobaric ensemble with fully flexible simulation boxes within the DVR basis set framework. In particular, we derive the appropriate DVR based expression for the pressure tensor when the electronic structure is represented using Kohn-Sham density functional theory, and we examine the convergence of this expression as a function of the basis set size. An illustrative example using 64 silicon atoms in a fully flexible box using a combination of the Martyna-Tobias-Klein [Martyna et al., J. Chem. Phys. 101, 4177 (1994)] and Car-Parrinello [Car and Parinello, Phys. Rev. Lett. 55, 2471 (1985)] algorithms is presented to demonstrate the efficacy of the approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.