Let $Z$ be the transient reflecting Brownian motion on the closure of an unbounded domain $D\subset \mathbb{R}^d$ with $N$ number of Liouville branches. We consider a diffuion $X$ on $\overline{D}$ having finite lifetime obtained from $Z$ by a time change. We show that $X$ admits only a finite number of possible symmetric conservative diffusion extensions $Y$ beyond its lifetime characterized by possible partitions of the collection of $N$ ends and we identify the family of the extended Dirichlet spaces of all $Y$ (which are independent of time change used) as subspaces of the space $\mathrm{BL}(D)$ spanned by the extended Sobolev space $H_e^1(D)$ and the approaching probabilities of $Z$ to the ends of Liouville branches.
Read full abstract