Abstract

The Hilbert space \(\mathcal {D}_{2}\) is the space of all holomorphic functions f defined on the open unit disc \(\mathbb {D}\) such that \({f}^{'}\) is in the Hardy Hilbert space \(\mathbf {H}^2.\) In this paper, we prove that the invariant subspaces of \(\mathcal {D}_{2}\) with respect to multiplication operator \(M_{z}\) can be approximated with finite co-dimensional invariant subspaces. We also obtain a partial result in this direction for the classical Dirichlet space.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.