Abstract

Given a symmetric Dirichlet form $(\mathcal{E},\mathcal{F})$ on a (non-trivial) $\sigma$-finite measure space $(E,\mathcal{B},m)$ with associated Markovian semigroup $\{T_{t}\}_{t\in(0,\infty)}$, we prove that $(\mathcal{E},\mathcal{F})$ is both irreducible and recurrent if and only if there is no non-constant $\mathcal{B}$-measurable function $u:E\to[0,\infty]$ that is \emph{$\mathcal{E}$-excessive}, i.e., such that $T_{t}u\leq u$ $m$-a.e.\ for any $t\in(0,\infty)$. We also prove that these conditions are equivalent to the equality $\{u\in\mathcal{F}_{e}\mid \mathcal{E}(u,u)=0\}=\mathbb{R}\mathbf{1}$, where $\mathcal{F}_{e}$ denotes the extended Dirichlet space associated with $(\mathcal{E},\mathcal{F})$. The proof is based on simple analytic arguments and requires no additional assumption on the state space or on the form. In the course of the proof we also present a characterization of the $\mathcal{E}$-excessiveness in terms of $\mathcal{F}_{e}$ and $\mathcal{E}$, which is valid for any symmetric positivity preserving form.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.