In the present study, we examined hemispheric differences in the representation and processing of temporally structured auditory stimuli. Neuronal responses evoked by sinusoidally frequency modulated (FM) tones, frequency sweeps, amplitude modulated (AM) tones and noise, click trains with constant inter-click intervals and natural vocalizations were recorded from the left (LAC) and right (RAC) auditory cortices in adult (4–6 months old) anaesthetized F344 rats. Using vector strength, modulation-transfer functions, van Rossum distances, or direction-selectivity index, representation and processing of structured auditory stimuli were compared in the LAC and the RAC. The RAC generally tended to exhibit a higher ability to synchronize with the stimulus, a higher reproducibility of responses, and a higher proportion of direction-selective units. The LAC, on the other hand, mostly had higher relative response magnitudes in the modulation transfer functions. Importantly, the hemispheric differences were dependent on the type of the stimulus and there was also a significant inter-individual variability. Our findings indicate that neural coding in the RAC is based more on timing of action potentials (temporal code), while the LAC uses more the response magnitudes (rate code). It is thus necessary to distinguish between the type of the neural code and the stimulus feature it encodes and reconsider the simple opinion about dominance of the LAC for temporal processing, as it may not hold in general for all types of temporally structured stimuli.
Read full abstract