Abstract

A variety of visually evoked responses are recorded in the fish optic tectum using single-cell recording technique. Based on indirect criteria (frequency power spectrum of spikes, spike waveform, receptive field size), they may be divided into two groups: those presumably recorded from axon terminals of retinal ganglion cells projecting to the tectum (precynaptic recording), and those recorded from tectal neurons (postsynaptic recording). In the present study, we used cobalt, a reversible blocker of synaptic transmission, as a more crucial criterion to identify the source of these responses. After cobalt application, some units (such as ON- and OFF-types of direction-selective units, orientation-selective and spontaneously active units) were visually responsive, while others (including ON-OFF direction-selective units with large receptive fields) ceased firing. Discrimination of the units by the use of cobalt has been found to coincide with that by the indirect physiological criteria. Thus, the differences in frequency power spectrum of spikes, spike waveform, and receptive field size may be used for efficient and reliable discrimination between pre- and post-synaptic recordings in the fish tectum.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call