Point of Care (POC) diagnosis provides an effective approach for controlling and managing Neglected Tropical Diseases (NTDs). Electrochemical biosensors are well-suited for molecular diagnostics due to their high sensitivity, cost-effectiveness, and ease of integration into POC devices. Schistosomiasis is a prominent NTD highly prevalent in Africa, Asia, and Latin America, with significant socioeconomic implications such as discrimination, reduced work capacity, or mortality, perpetuating the cycle of poverty in affected regions worldwide. This review explores recent advancements in nanoparticle-based electrochemical biosensors for disease diagnosis, specifically focusing on the schistosome parasite. The synthesis processes and advantages of microwave-assisted preparation of metal oxide nanoparticles are highlighted, showcasing improved purity and energy efficiency compared to traditional combustion methods. In detection prototypes, Schistosome Egg Antigen (SEA) derived from Schistosome mansoni eggs obtained from primary and secondary hosts were evaluated using direct Enzyme-Linked Immunosorbent Assay (ELISA) to measure antibody concentrations in the primary and secondary hosts post-injection. Biosensor system was then developed by modifying developed electrodes with Gold Nanopartcicles (AuNP), Aluminium Gallium Nitride/Gallium Nitride (AlGaN/GaN), Mercaptopropyltrimethoxysilane/Gold Nanoparticles (MPTS/AuNPs) or metal oxide nanoparticles in conjugation with schistosome antibodies, registering current response on interactions with SEA, via cyclic voltammetry (CV), differential pulse voltammetry (DPV), Electrochemical Impedance Spectroscopy (EIS), Amperometry (A) and other electrochemical techniques. This review provides a summary of various constructions of electrochemical biosensors for detecting schistosomiasis.
Read full abstract