We investigate phonon thermal transport of fullerene-based single-molecule junctions by employing classical molecular dynamics (MD) simulations. We compute the thermal conductances of C60 fullerene monomers, dimers, and trimers utilizing three distinct MD methods. We observe the equilibration dynamics in one approach, and employ two other nonequilibrium steady state simulation methods. We discuss technical aspects of each simulation technique, and show that their predictions for the thermal conductance agree. Our simulations reveal that while the thermal conductance of fullerene monomer and dimer junctions remains similar, that of trimer junctions experiences a significant reduction. This study could assist in the design of high-performing thermoelectric junctions, where low thermal conductance is desired.
Read full abstract