Abstract

By applying the nonequilibrium Green function formalism combined with density functional theory, we have investigated the electronic transport properties of the C60 dimer and its endohedral complex Li@C60 dimer. Our results show that the doping of Li atoms significantly changes the transport properties of the C60 dimer. Negative differential resistance is found in such systems. Especially, the doping of Li atoms can lead to a much larger negative differential resistance at much lower bias, and it is quite evident from the plot of differential conductance versus bias. The negative differential resistance behavior is understood in terms of the evolution of the transmission spectrum and projected density of states spectrum with applied bias combined with molecular projected self-consistent Hamiltonian states analyses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.