Abstract

Plasmon resonances in C60 fullerene dimers are investigated using time-dependent density functional theory. Owing to larger separation between molecules, there exist capacitive coupling plasmon modes in fullerene dimers. With the decrease of the gap distance, low-energy capacitive coupling plasmon modes show red shift. When the gap distance further decreases, because of the electrons tunneling across the dimer junction, plasmon resonance modes of C60 fullerene dimers are significantly modified, and the charge transfer plasmon modes occur. C60 fullerene dimer is different from metallic nanostructures dimmer. As the gap distance is again reduced, the charge transfer plasmon modes are not blue-shifted, but they are further red-shifted. In the range of the visible spectrum, C60 fullerene dimmers have strong absorption peaks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.