More and more attention has been paid to ships with a DC power grid. State-of-charge (SOC) estimation is a pivotal and challenging assignment for lithium-ion batteries in such ships. However, the precision of SOC estimation is strongly connected with the system parameters. To better identify these parameters in lithium-ion batteries, a differential evolution (DE) algorithm was introduced into this paper as the optimizer. Initially, a first-order RC equivalent circuit model (ECM) was created to characterize the battery’s dynamic behavior. Following this, to estimate open-circuit voltage (OCV) throughout the entire dynamic process, a math model of optimization was established to minimize inaccuracies between the real and estimated terminal voltages. Moreover, estimated SOC values were obtained through OCV-SOC mappings and were contrasted against the true SOC values. The findings manifested the efficacy of the presented structure and technique in comparison with various frequently-cited DE variants.
Read full abstract