Abstract
The role of multi-area economic dispatch (MAED) in power system operation is increasingly significant. It is a non-linear and multi-constraint problem with many local extremes when considering the valve point effects, posing challenges in obtaining a globally optimal solution, especially for large-scale systems. In this study, an improved variant of differential evolution (DE) called CLDE based on comprehensive learning strategy (CLS) is proposed to solve this problem. Three improved strategies are employed to enhance the performance of CLDE. (1) A CLS-based guided mutation strategy is proposed, in which learning exemplars constructed by competent individuals are used to generate mutant vectors to prevent the searching away from global optimum and speed up convergence. (2) A time-varying increasing crossover rate is devised. It can endow CLDE with a larger probability at the later stage to help individuals escape from local extremes. (3) A CLS-based crossover strategy is presented. Trial vectors directly utilize the information from learning exemplars for evolving, which can ensure the search efficiency and population diversity. CLDE is applied to six MAED cases. Compared with DE, it approximately consumes 32 %, 35 %, 10 %, 22 %, 62 %, and 20 % of evaluations to attain comparable results, saves 126.2544$/h, 81.8173$/h, 152.0660$/h, 360.7907$/h, 65.5757$/h, and 1732.8544$/h in fuel costs on average, and exhibits improvements of 34.77 %, 1.80 %, 0.00 %, 76.09 %, 95.15 %, and 16.76 % in robustness, respectively. Moreover, it also outperforms other state-of-the-art algorithms significantly in statistical analysis. Furthermore, the effects of improved strategies on CLDE are thoroughly investigated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.