Abstract

Differential Evolution (DE), as a population-based meta-heuristic global optimization technique, has shown excellent performance in handling optimization problems in continuous spaces. Despite its effectiveness, the DE algorithm suffers from shortcomings such as complexity of parameter selection and limitations of the mutation strategy. Therefore, this paper presents a new strategy for generating trial vectors based on a hierarchical archive, which integrates promising information during evolution with current populations to obtain a good perception of the objective landscape. Moreover, to mitigate mis-scaling by scale factor, an adaptive parameter generation mechanism with hierarchical selection (APSH) is proposed. Furthermore, a novel population diversity metric technique and a restart mechanism based on wavelet functions is introduced in this paper. Comparative experiments were conducted to evaluate the performance of the proposed algorithm using 100 benchmark functions from the CEC2013, CEC2014, CEC2017, and CEC2022 test suites. The results demonstrate that the HAPI-DE algorithm outperforms or is on par with 6 recent powerful DE variants. Additionally, HAPI-DE was utilized in parameter extraction for the photovoltaic model STP6-120/36. The findings suggest that our algorithm, HAPI-DE, demonstrates competitiveness when compared to the 6 other DE variants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.