Cervical spondylotic myelopathy (CSM) stands as the most prevalent form of spinal cord injury, frequently prompting various changes in both the brain and spinal cord. However, the precise nature of these changes within the brains and spinal cords of CSM patients experiencing hand clumsiness (HCL) symptoms has remained elusive. The authors aimed to scrutinize these alterations and explore potential links between these changes and the onset of HCL symptoms. Using the modified Japanese Orthopaedic Association (mJOA) scale, the authors classified CSM patients into two groups: those without HCL and those with HCL. The authors performed voxel-wise z-score transformation amplitude of low-frequency fluctuations (zALFF) and resting-state functional connectivity (FC) evaluations in the brain. Additionally, they used the Spinal Cord Toolbox to calculate the fractional anisotropy (FA) of spinal cord tracts. The analysis also encompassed an examination of the correlation of these measures with improvements in mJOA scores. Significant disparities in zALFF values surfaced in the right calcarine, right cuneus, right precuneus, right middle occipital gyrus (MOG), right superior occipital gyrus (SOG), and right superior parietal gyrus (SPG) between healthy controls (HC), patients without HCL, and patients with HCL, primarily within the visual cortex. In the patient group, patients with HCL displayed reduced FC between the right calcarine, right MOG, right SOG, right SPG, right SFG, bilateral MFG, and left median cingulate and paracingulate gyri when compared with patients without HCL. Moreover, significant differences in FA values of the corticospinal tract (CST) and reticulospinal tract (REST) at the C2 level emerged among HC, patients without HCL, and patients with HCL. Notably, zALFF, FC, and FA values in specific brain regions and spinal cord tracts exhibited correlations with mJOA upper-extremity scores. Additionally, FA values of the CST and REST correlated with zALFF values in the right calcarine, right MOG, right SOG, and right SPG. Alterations within brain regions associated with the visual cortex, the fronto-parietal-occipital attention network, and spinal cord pathways appear to play a substantial role in the emergence and progression of HCL symptoms. Furthermore, the existence of a potential connection between the spinal cord and the brain suggests that this link might be related to the clinical symptoms of CSM.
Read full abstract