Abstract

While the bilateral common carotid artery (CCA) ligation model is widely used in cerebrovascular disease and dementia studies, it can frequently cause seizures. We examined the validity of seizure as an experimental model of ischemia. Eight-week-old male Wistar and Sprague-Dawley (SD) rats were implanted with electrocorticography (ECoG) electrodes and bilateral CCA ligation was performed and compared to the sham groups. ECoG monitoring was used to confirm the seizure discharge and count the number of spikes in the interictal phase 2 h after ligation, followed by power spectral analysis. Magnetic resonance imaging (MRI) was performed 6 h after bilateral CCA ligation to assess fractional anisotropy (FA), apparent diffusion coefficient (ADC), and cerebral blood flow (CBF) values. Magnetic resonance spectroscopy (MRS) was also performed and the ischemic parameters and electrophysiological changes were compared. The Wistar rat group had significantly higher mortality, frequency of seizures, incidence of non-convulsive seizures, and number of spikes in the interictal period compared to those in the SD rat group. Power spectral analysis showed increased power in the delta band in both Wistar and SD rat groups. MRI, after CCA ligation, showed significantly lower ADC values, lower glutamine and glutamate levels, and higher lactate values in Wistar rats, although there was no difference in FA values. Metabolic and electrophysiological changes after CCA ligation differed according to the rat strain. Wistar rats were prone to increased lactate and decreased glutamine and glutamate levels and the development of status epilepticus. Seizures can affect the results of ischemic experiments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call