Abstract

This study aims to investigate the existence of any Diffusion Tensor Imaging (DTI) value differences in Brain Metastases (BM) due to lung adenocarcinoma based on the Epidermal Growth Factor Receptor (EGFR) gene mutation status. 17 patients with 32 solid intracranial metastatic lesions from lung adenocarcinoma were included prospectively. Patients were divided according to the EGFR mutation status as EGFR (+) (group 1, n:8) and EGFR wild type (group 2, n:9). The Fractional Anisotropy (FA), apparent diffusion coefficient (ADC), normalized ADC (nADC), Axial Diffusivity (AD), and Radial Diffusivity (RD) values were measured from the solid component of the metastatic lesions and nADC values were calculated. DTI values were compared between group 1 and group 2. The receiver-operating characteristic analysis was used to obtain cut-off values for the parameters presenting a statistical difference between the EGFR gene mutation-positive and wild type group. There were statistically significant differences in measured ADC, nADC, AD, and RD values between group 1 and group 2. The ADC, nADC, AD, and RD values were significantly lower in group 1. There was no significant difference in FA values between the two groups. Analysis by the ROC curve method revealed a cut-off value of ≤721 x 10-6 mm2/s for ADC (Sensitivity= 72.7, Specificity=85.7); ≤0.820 for nADC (Sensitivity=72.7, Specificity=90.5), ≤ 886 for AD (Sensitivity=81.8, Specificity=81.0), and ≤588 for RD (Sensitivity=63.6, Specificity=90.5) in differentiating EGFR mutation (+) group from wild type group. A combination of the decreased ADC, nADC, AD, and RD values in BM due to lung adenocarcinoma can be important for predicting the EGFR gene mutation status. DTI features of the brain metastases from lung adenocarcinoma may be utilized to provide insight into the EGFR mutation status and guide the clinicians for the initiation of targeted therapy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.