A mechanical fabrication of micro pyramid-structured silicon surface is proposed using crossed grooving with a 60° V-tip of diamond grinding wheel. It can obtain high form-accuracy, good surface quality and efficient productivity in contrast to laser machining and etching, and also assure a high aspect ratio in contrast to other mechanical processes. In order to describe its micro-structured topography, a white-light interferometer was employed, and its measured point cloud was matched using an Iterative Closest Point (ICP) algorithm. In micro grinding, a novel CNC mutual-wear truing was first developed to sharpen the wheel V-tip; then, the effects of microscopic wheel topography, silicon crystal-orientation and grinding parameter were investigated on ground micro-topography, truing ratio and material removal ratio; finally, its form-accuracy, pyramid top radius, groove tip radius, surface roughness and aspect ratio were evaluated. It is shown that better microscopic grain protrusion topography on wheel V-tip produces much larger material removal ratio and much better micro-structured topography in micro grinding, but it leads to much less truing ratio in finer GC truing. In micro grinding, silicon crystal-orientation has little effect on micro-structured topography due to diamond crystal-orientations that are randomly distributed on wheel V-tip. Although the micro pyramid-structured form error is only about 3.4 μm, its V-groove bottom and pyramidal top have very large form errors (23.1–47.9 μm) due to the sharpness of wheel V-tip and the frangibility of micro pyramid top. On increasing feed speed, its pyramid top radius decreases and its groove tip radius slightly increases, ultimately leading to an increase in aspect ratio, whereas its surface quality descends. It is concluded that the micro-pyramid arrays may be precisely patterned on silicon surface using a SD600 wheel with crossed tool paths, on-machine V-tip truing and the depth of cut in 1 μm.