Chitosan is a well-known biomaterial in the field of cartilage tissue engineering because of its flexibility. The construction of chitosan-based scaffolds is reviewed in several production methods, including freeze-drying, gelation, salt leaching, and electrospinning. In this review, many benefits of chitosan are discussed, including the interaction of chitosan with other materials and their effects, its adaptability, high reproducibility, biocompatibility, role in cellular differentiation, interactions with TGF-β (transforming growth factor-β), protein interactions, biodegradability, influencing osteoblast expression, and potential for treating bone diseases. The study also provides information on how mathematical models are used to analyze how MSC (mesenchymal stem cells) and chondrocyte distribution in multilayer hydrogels change in response to TGF-β diffusion. Results showed that collagen has weak mechanical properties and easily disintegrates during bone tissue formation, it is difficult to use alone as a biomaterial, and new scaffolds made of whey protein isolate (WPI) and chitosan may help repair osteochondral tissue. However, the thorough analysis reveals chitosan's crucial contribution to the development of cartilage tissue engineering as well as its potential to address issues in the field.
Read full abstract