Antioxidant activity, anti-aging effects and cytotoxicity activity of cinnamon essential oils from Cinnamomum zeylanicum were investigated in this study. The antioxidant activities of the cinnamon essential oil at the concentrations of 125, 250, 500, and 1000 µg/mL were determined using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2ʹ-azino-bis (3-ethylbenzo-thiazoline-6-sulfonic acid) diammonium salt (ABTS). The inhibitory activities against collagenase, elastase and tyrosinase were evaluated for anti-aging effects. The antioxidant activity determined by DPPH and ABTS assays varied from 4.91 - 28.74% and 4.96 - 50.17%, respectively. In addition, cinnamon essential oil at all concentrations tested (100, 200, 500, and 1000 µg/mL) inhibited tyrosinase activity by 61.68 - 93.12 %, collagenase activity by 2.83 - 30.28 % and elastase activity by 4.37 - 33.92 %. The cytotoxicity activity determined by the diphenyltetrazolium (MTT) assay revealed that the cinnamon essential oil at the concentration less than 100 µg/mL did not exhibit cytotoxicity activity on human fibroblast cells while the percentage of cell viability decreased when exposed to this oil at the concentration higher than 150 µg/mL. These results demonstrated that the cinnamon essential oil has antioxidant, tyrosinase inhibitory, collagenase inhibitory, and elastase inhibitory activities. In addition, cinnamon essential oil at each effective concentration did not show any toxicity when tested on normal human fibroblast cell. Therefore, this essential oil could be a potential candidate for cosmetic and pharmaceutical products.