Abstract Aim Detection of suspected bladder cancer at diagnostic cystoscopy is challenging and is dependent on clinician skill. Artificial Intelligence (AI) algorithms, specifically, machine learning and deep learning, have shown promise in accurate classification of pathological images in various specialties. However, utility of AI for urothelial cancer diagnosis is unknown. Here, we aimed to systematically review the extant literature in this field and quantitively summarise the role of these algorithms in bladder cancer detection. Method The EMBASE, PubMed and CENTRAL databases were searched up to December 22nd 2020 , in accordance with the PRISMA guidelines, for studies that evaluated AI algorithms for cystoscopic diagnosis of bladder cancer. Random-effects meta-analysis was performed to summarise eligible studies. Risk of Bias was assessed using the QUADAS-2 tool. Results Five from 6715 studies met criteria for inclusion. Pooled sensitivity and specificity values were 0.93 (95% CI 0.89–0.95) and 0.93 (95% CI 0.80–0.89) respectively. Pooled positive likelihood and negative likelihood ratios were 14 (95% CI 4.3–44) and 0.08 (95% CI: 0.05–0.11), respectively. Pooled diagnostic odds ratio was 182 (95% CI 61–546). Summary AUC curve value was 0.95 (95% CI 0.93–0.97). No significant publication bias was noted. Conclusions In summary, AI algorithms performed very well in detection of bladder cancer in this pooled analysis, with high sensitivity and specificity values. However, as with other clinical AI usage, further external validation through deployment in real clinical situations is essential to assess true applicability of this novel technology.