Catalytic dehydroaromatization of n-alkanes into high-value aromatics has garnered extensive interest from both academia and industry. Our group has previously reported that phosphorus-doped carbon materials exhibit high selectivity for C-H bond activation in the dehydroaromatization of n-hexane. In this study, using n-heptane as a probe, we synthesized biomass-based phosphorus-doped carbon catalysts to investigate the impact of hydrogen heat treatment and carbon deposition on catalyst structure. Despite achieving an initial conversion of n-heptane at approximately 99.6%, with a toluene selectivity of 87.9%, the catalyst activity fell quickly. Moreover, longer hydrogen treatment time and higher hydrogen concentrations were found to accelerate catalyst deactivation. Thermogravimetric analysis (TGA) and N2 adsorption measurements (BET) indicated that a small amount of coke deposition was not the primary cause of catalyst deactivation. Temperature-programmed desorption of ammonia gas (NH3-TPD) revealed a significant decrease in acid-active functional groups. X-ray photoelectron spectroscopy (XPS) and solid-state 31P NMR spectroscopy confirmed the reduction of active central phosphorus species. These results suggest that catalyst deactivation primarily arises from the decrease in acidity and the partial reduction of phosphorus-containing groups, leading to a substantial loss of active sites. This work contributes new perspectives to understanding the properties and design improvements of metal-free carbon catalysts.
Read full abstract