Abstract

The micro-scale gas adsorption–desorption characteristics determine the macro-scale gas transport and production behavior. To reveal the three-dimensional stress state-induced gas adsorption–desorption characteristics in coal-bearing shale reservoirs from a micro-scale perspective, the coal-bearing shale samples from the Dongbaowei Coal Mine in the Shuangyashan Basin were chosen as the research subject. Isothermal adsorption–desorption experiments under three-dimensional stress state were conducted using the low field nuclear magnetic resonance (L-NMR) T2 spectrum method to simulate the in-situ coal-bearing shale gas adsorption–desorption process. The average effective stress was used as the equivalent stress indicator for coal-bearing shale, and the integral of nuclear magnetic resonance T2 spectrum amplitude was employed as the gas characterization indicator for coal-bearing shale. A quantitative analysis was performed to examine the relationship between gas adsorption in coal-bearing shale and the average effective stress. And a quantitative analysis was performed to examine the relationship between the macroscopic and microscopic gas quantities of coal-bearing shale. Experimental findings: (1) The adsorption–desorption process of coal-bearing shale gas follows the L-F function model and the D-A-d function model respectively with respect to the amount of gas and the average effective stress. (2) There is a logarithmic relationship between the macroscopic and microscopic gas quantities of coal-bearing shale during the adsorption–desorption process. This quantitatively characterizes the differences in the curves, which may be related to the elastic–plastic deformation, damage and fracture of the micropores in coal-bearing shale, as well as the hysteresis of gas desorption and the stress field of the gas occurrence state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.