In order to achieve water conservation and salt control in saline irrigation areas and improve the soil ecological environment of farmland in irrigation areas, this study carried out a field trial in 2020–2021 on edible sunflowers planted in saline subsurface farmland in the Hetao Irrigation District. Three irrigation level treatments and a control setup under subsurface drainage were compared. The control was with no drainage and local conventional irrigation levels (the spring irrigation amount is 240 mm and the bud stage irrigation amount is 90 mm, CK); and the three irrigation levels were conventional irrigation (the spring irrigation amount is 240 mm and the bud stage irrigation amount is 90 mm, W1), medium water (the spring irrigation amount is 120 mm and the bud stage irrigation amount is 90 mm, W2), and low water (the spring irrigation amount is 120 mm and there is no irrigation in the bud stage, W3). The results showed that soil desalinization was best in the conventional irrigation (W1) treatment and lowest in the low-water treatment (W3) under subsurface drainage. The desalinization rate was 13.54% higher in the subsurface drainage than in the undrained treatment with the same amount of irrigation water. Under subsurface drainage, the medium-water treatment (W2) increased the diversity of soil microorganisms and the relative abundance of dominant phyla such as Ascomycetes, Chlorobacterium, Acidobacterium, and Ascomycetes among soil bacteria and Ascomycetes and Tephritobacterium amongst fungi. The average sunflower yield in the treatments under subsurface drainage increased by 32.37% compared with the undrained treatment, and the medium-water treatment (W2) was the most favorable for protein and essential amino acid synthesis. Structural equation modeling indicated that desalinization rate, irrigation water utilization efficiency, bacterial Chao1 abundance and Shannon diversity, and fungal Chao1 abundance and Shannon diversity were the major influences on sunflower yield. Based on the entropy weight method TOPSIS model, 15 indicators such as soil desalinization rate, soil microbial diversity, water and nitrogen utilization rate, and sunflower yield and quality were evaluated comprehensively for each water treatment of subsurface drainage farmland. It was found that the irrigation volume under tile drainage of 210 mm (W2) had the highest comprehensive score, which could improve the soil microenvironment of the farmland while realizing water conservation and salt control in salty farmland, increase the production of high-quality crops, and be conducive to the sustainable development of agriculture; it was the optimal irrigation treatment for the comprehensive effect. The results of this study are of great significance for the realization of efficient water conservation and salt control and the protection of food security and ecological safety in the Hetao Irrigation District.
Read full abstract