Abstract
AbstractTo combat the dwindling supply of freshwater, solar‐driven desalination using plasmonic nanomaterials has emerged as a promising and renewable solution. Refractory plasmonic carbide nanomaterials are exciting candidates that are inexpensive and chemically robust but have not been widely explored. Herein, plasmonic carbide interfaces made of TiC, ZrC, and HfC nanoparticle aggregates loaded onto to a mixed cellulose ester (MCE) membrane were explored to gain insight into their solar‐vapor generation and desalination potential. Desalination using Atlantic Ocean water under 1 sun intensity yielded rates of 1.26 ± 0.01, 1.18 ± 0.02, and 1.40 ± 0.01 kg m−2 h−1, with efficiencies of 86%, 80%, and 96% for TiC, ZrC, and HfC, respectively. Carbide interfaces showed good stability and effectively removed heavy metal ions and salt from solutions with concentrations up to 35%. PVA hydrogel based TMC evaporators afforded rates of 3.31 ± 0.03 and 3.22 ± 0.03 kg m−2 h−1 for TiC and ZrC, respectively. The HfC‐PVA interface afforded a high solar desalination rate of 3.69 ± 0.04 kg m−2 h−1, corresponding to an efficiency of 97% under 1‐sun illumination. The hydrogel evaporators also retained their strong salt rejection action over time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.