Abstract

Flow electrode capacitive deionization (FCDI) employs carbon-based materials for electrochemical separation. Redox additives like vanadium, ferricyanide, and organic molecules have boosted desalination rates in FCDI. However, these additives must be low-cost, have chemical stability in electrolytes, and have low toxicity. We investigate two iron-based redox couples, iron chloride, and iron citrate, for their cost-effectiveness and reduced health risks. We incorporate them with activated carbon (AC) in flow electrodes, resulting in a significant enhancement of the salt removal rate, with iron chloride increasing it by 100 % and iron citrate by 23 % compared to standard AC slurries. In our system, the AC exhibits a salt removal rate of 7.8μmolcm−2min−1, while the iron chloride system reaches 15.6μmolcm−2min−1. Iron citrate flow electrodes achieve a desalination rate of 9.6μmolcm−2min−1, maintaining a pH suitable for potable water. We observe that iron chloride concentration in the flow electrode influences iron crossover and pH in the water streams, leading to acidity. Conversely, the iron citrate-based slurry maintains minimal iron crossover and a neutral pH. This study highlights iron-based redox additives as promising for FCDI slurries and the need for tailored flow electrode composition based on specific ion removal requirements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call