Falling is the leading cause of both fatal and nonfatal injury in the elderly, often requiring expensive hospitalization and rehabilitation. We study the stability of human balance during stance using inverted single- and double-pendulum models, accounting for physiological reflex delays in the controller. The governing second-order neutral delay differential equation (NDDE) is transformed into an equivalent partial differential equation (PDE) constrained by a boundary condition and then into a system of ordinary differential equations (ODEs) using the Galerkin method. The stability of the ODE system approximates that of the original NDDE system; convergence is achieved by increasing the number of terms used in the Galerkin approximation. We validate our formulation by deriving analytical expressions for the stability margins of the double-pendulum human stance model. Numerical examples demonstrate that proportional–derivative–acceleration (PDA) feedback generally, but not always, results in larger stability margins than proportional–derivative (PD) feedback in the presence of reflex delays.