Experimental depth distributions of the concentration of implanted xenon ions depending on their charge state and irradiation energy are presented. Xenon ions in charge states q = 1–20 and energies in the range from 50 to 400 keV are incorporated into single-crystal silicon. Irradiation is performed in the direction not coinciding with the crystallographic axes of the crystal to avoid the channeling effect. The ion fluence varies in the range of 5 × (1014–1015) ion/cm2. The irradiation by singly charged ions and investigation of the samples by Rutherford backscattering spectroscopy is performed using an HVEE acceleration complex at Moscow State University. Multiply charged ions are implanted using a FAMA acceleration complex at the Vinca Institute of Nuclear Sciences. The depth distribution profiles of the incorporated ions are found using Rutherford backscattering spectroscopy. Experimental results are correlated with computer calculations. It is shown that the average projective path of multiply charged ions in most cases is shorter when compared with the average projected path of singly charged ions and the results of computer modeling.
Read full abstract