In this work, a methodology, based on a self-organization process, to form gold nanoclusters on the 6H-SiC surface, is illustrated. By scanning electron microscopy and atomic force microscopy the gold self-organization induced by annealing processes was studied and modelled by classical limited surface diffusion ripening theories. These studies allowed us to fabricate Au nanoclusres/SiC nanostructured materials with tunable structural properties. The local electrical properties of such a nanostructured material were probed, by conductive atomic force microscopy collecting high statistics of I-V curves. The main observed result was the Schottky barrier height (SBH) dependence on the cluster size. This behaviour is interpreted considering the physics of few electron quantum dots merged with the ballistic transport. A quite satisfying agreement between the theoretical forecast behaviour and the experimental data has been found.
Read full abstract