This paper studies the impact of different forecasting techniques on the inventory bullwhip effect in two parallel supply chains with the competition effect, which is in contrast to the situation of a single product in a serial supply chain. In particular, this paper constructs two parallel supply chains, each of which includes one manufacturer and one retailer. Moreover, the market demand is impacted by the self-price sensitivity coefficient, the cross-price sensitivity coefficient, the market share, and the demand shock. We then assumed that the retailer can forecast market demand by using different forecasting techniques (i.e., the moving average technique (MA), the exponential smoothing technique (ES), and the minimum mean square error technique (MMSE)). We constructed the quantity model of the bullwhip effect and the inventory bullwhip effect. Finally, we analyzed the impact of different forecasting techniques and market share on the inventory bullwhip effect. We analyzed the conditions under which the retailers should choose different types of forecasting techniques on the basis of the inventory bullwhip effect. The results show that the MMSE forecasting technique can reduce the lead-time demand forecast error to the largest extent, and the inventory bullwhip effect can obtain the lowest level using the MMSE method: retailer-1 can reduce the inventory bullwhip effect by using the MA technique, when the self-price sensitivity coefficient, the price autoregressive coefficient, and the probabilities associated with customers choosing retailer-1’s product are very low.