The DP1000 cold-rolled dual phase steel, the thickness of which is 1.2 mm, was required to do the tensile test under nine different strain rates from 10-4 s-1 to 1000 s-1. The mechanical properties and morphologies of the steel were obtained and analyzed. According to the C-J model, the plastic deformation characteristics of dual phase steel under different strain rates were studied. By means of transmission electron microscope (TEM), the morphologies of ferrite and martensite in the dynamic were observed. Finally, the constitutive models of quasi-static and high strain rate were established by using the modified Johnson-Cook model. The results reveal that DP1000 dual phase steel has obvious strain rate sensitivity, and it is a relatively pure ferrite and martensite dual phase structure. There are two stage strain hardenging characteristics in DP1000. In the first stage, the strain hardening ability of ferrite is higher, and the second stage is martensite deformation stage, the strain hardening ability is lower. The modified J-C constitutive model has high fitting effect, and the experimental results are matched with the fitting values.
Read full abstract