Abstract
Abstract The isothermal hot compression tests of homogenized 6026 aluminum alloy under wide range of deformation temperatures (673–823 K) and strain rates (0.001–10 s−1) were conducted using Gleeble-1500 thermo-simulation machine. According to the experimental obtained true stress–strain data, the constitutive equations were derived based on the original Johnson–Cook (JC) model, modified JC model, Arrhenius model and strain compensated Arrhenius model, respectively. Moreover, the prediction accuracy of these established models was evaluated by calculating the correlation coefficient (R) and average absolute relative error (AARE). The results show that the flow behavior of homogenized 6026 aluminum alloy is significantly affected by the strain rate and temperature. The original JC model is inadequate to provide good description on the flow stress at evaluated temperatures. The modified JC model and Arrhenius model greatly improve the predictability, since both of these models consider the coupled effects of deformation temperature and strain rate. However, to give more precise description, the influence of strain on the material constants should be introduced into Arrhenius model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.