Creation of entangled states of quantum systems with low decoherence rates is a cornerstone in practical implementation of quantum computations. Processes of separate dephasing in each qubit in experimentally feasible systems is commonly accepted to destroy entanglement. In this work, we consider a system of two strongly coupled qubits that interact with dephasing reservoirs. We demonstrate that interaction with dephasing reservoirs can contribute to the formation of a long-lived mixed entangled state with nonzero concurrence. The weight of the subradiant state in this mixed state tends toward unity if the dephasing rate is much larger than the radiative rate and less than the coupling constant between qubits. The lifetime of this state is proportional to the exponent of the ratio of the coupling constant to environmental temperature and can be, by orders of magnitude, larger than the system's characteristic dephasing and dissipation times. Therefore, high dephasing, along with strong coupling, contributes to the creation of an entangled state with a long lifetime. This result paves the way for creation of long-lived entangled states.