Abstract

Ligand functionalization is a powerful approach for modifying the electronic structure of metal-organic frameworks when targeting the optimal electronic properties for photocatalysis and photovoltaics. However, its effect on the charge carrier lifetimes and recombination pathways remains unexplored. In this work, first-principles simulations, including nonadiabatic molecular dynamics, are performed for the representative TiO2-based metal-organic framework systems MIL-125-X to unravel the impact of ligand functionalization on the nonradiative electron-hole recombination process, decoherence rates, and phonon modes giving the largest contribution to the nonradiative decay. Nonradiative recombination rates, simulated using the PBE0 density functional, are in excellent agreement with experiment. The ligand functionalization in MIL-125-X influences the recombination rates, unraveling the trend opposite to the evolution of the band gap and affecting the nonadiabatic coupling coefficients. Ligand modification impacts the phonon modes, which contribute most to the recombination process, altering the distribution between soft phonon modes and vibrational modes associated with specific structural motifs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.