Abstract

Construction of optimal gate operations is significant for quantum computation. Here an efficient scheme is proposed for performing shortcut-based quantum gates on superconducting qubits in circuit quantum electrodynamics (QED). Two four-level artificial atoms of Cooper-pair box circuits, having sufficient level anharmonicity, are placed in a common quantized field of circuit QED and are driven by individual classical microwaves. Without the effect of cross resonance, one-qubit NOT gate and phase gate in a decoupled atom can be implemented using the invariant-based shortcuts to adiabaticity. With the assistance of cavity bus, a one-step SWAP gate can be obtained within a composite qubit-photon-qubit system by inversely engineering the classical drivings. We further consider the gate realizations by adjusting the microwave fields. With the accessible decoherence rates, the shortcut-based gates have high fidelities. The present strategy could offer a promising route towards fast and robust quantum computation with superconducting circuits experimentally.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.