AbstractDigital Radio Mondiale (DRM) is a digital Orthogonal Frequency Division Multiplexing (OFDM) broadcasting standard that has been employed all over the world. The operating carrier frequency and time of DRM station change with the scheduling period. The user terminal commonly uses channel decoding and audio decoding to detect the DRM radio. This conventional signal detection method always fail when the station is not working, or the signalâtoânoise ratio (SNR) is weak, or the designated frequency band is illegally occupied. Besides, the conventional method needs at least one DRM transmission super frame with a duration of 1.2 s, which causes delay and brings additional computations. To solve the challenges faced by conventional method, this paper has proposed an agile and efficient signal detection method based on the Generalized Likelihood Ratio Test. The proposed method coherently integrates the frequency pilots of successive OFDM symbols via discrete Fourier transform, then propose a sufficient statistic to detect the DRM radio. The required number of OFDM symbols, which is much smaller than that of one transmission super frame, is adaptively chosen from the given probabilities of false alarm and correct detection. The computations and SNR requirement of the proposed method are both smaller than the conventional method, which help the user terminal quickly detect the DRM signal over the given frequency band. The proposed method also provides a new perspective for electromagnetic spectrum management.
Read full abstract