This paper presents an Enhanced Whale Optimization Algorithm (EWO) approach for tuning to perfection of Fractional Order Proportional Integral and integral order Controller (FOPI λ) is used to sensorless speed control of permanent magnet Brushless DC (PMBLDC) motor under the operating dynamic condition such as (i) speed change by set speed command signal (ii) varying load conditions, (iii) integrated conditions and (iv) controller parameters uncertainty. On the other hand, it deals with a reduced THD (Total Harmonic Distortion) under dynamic operating conditions to improve the power quality for the above control system. Here present are three optimization techniques, namely (i) Enhanced Whale Optimization (EWO), (ii) Invasive Weed Optimization (IWO), and (iii) Social Spider Optimization (SSO) for fine-tuning of the FOPI λ controller parameters with reduction of THD. The proposed optimization algorithm optimized FOPI λ controller are compared under various BLDC motor operating conditions. Based on the results of MATLAB/Simulink models, the proposed algorithms are evaluated. Here, both the simulation and the results of the experiments are validated for the proposed controller technique. It demonstrates that the effectiveness of the proposed controllers is completely validated by comparing the three intelligent optimization techniques mentioned above. The EWO optimized FOPI λ controller for speed control of sensorless PMBLDC motor clearly outperforms the other two intelligent controllers by minimizing the time domain parameters, THD, performance Indices error, convergence time, control efforts, cost function, mean and standard deviation.
Read full abstract