With the high integration of power electronic devices, wireless power transfer (WPT) systems are required to have output characteristics of different specifications that are independent of the load. However, existing methods for realizing dual-output WPT systems have problems such as complex circuits, cumbersome control schemes, low system stability, insufficient system space utilization, and unnecessary cross-coupling. Therefore, in order to solve the above problems, this paper proposes a dual-receiver WPT system with dual constant current (CC) output based on an integrated decoupling coil. In this system, the DD coil is wound vertically in series with the solenoid coil and serves as the first receiving coil to achieve energy transmission in the system. While the solenoid coil is used in the transmitting coil and the second receiving coil, and the coils are perpendicular to each other to achieve natural decoupling. Furthermore, the receiving coils are integrated together on the receiving side ferrite plate. Therefore, there is no cross-coupling interference in the system, which simplifies the system design. Firstly, the natural decoupling characteristics of the magnetic coupler and the coil optimization method are analyzed in detail theoretically. Secondly, a detailed mathematical analysis is performed on the dual CC output characteristics with different specifications that are load-independent and have zero phase angle operation. Again, the zero voltage switching of the inverter can be achieved by changing the compensation component parameters through simulation verification. Finally, a prototype with a rated power of 283 W is constructed for validation purposes. The first receiver delivers a CC output of 3 A, while the second receiver provides a CC output of 4 A, with the DC–DC conversion efficiency reaching a peak of 90.2%. The experimental results confirm the accuracy of the theoretical analysis.