Abstract

This study investigates the development of self-powered sensors employing single-pillar thermocells to harness body heat and solar thermal energy. A pyrolytic graphite sheet was selected for its low water vapor permeability, and its surface was modified to be hydrophilic to minimize interfacial resistance. Two types of DC–DC converters, Asahi Kasei Microdevices AP4473 and matrix mercury, underwent evaluation for compatibility with these thermocells. The compact 1.5 cm3 (1 cm × 1 cm × 1.5 cm) device effectively powered the AP4473 converter, illuminating a light-emitting diode. A larger device (2.5 cm × 2.5 cm × 1.5 cm) efficiently drove the matrix mercury converter, enabling the operation of bluetooth low-power sensors. These self-powered sensors wirelessly provided humidity and temperature data using solar thermal energy for approximately 4 h per day during peak temperature differences in January. This study showcases the potential of thermocells for sustainable energy harvesting and suggests avenues for future research, such as exploring alternative heat sources like geothermal energy to power these sensors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.