Deficient mismatch repair or microsatellite instability is a major predictive biomarker for the efficacy of immune checkpoint inhibitors of colorectal cancer. However, routine testing has not been uniformly implemented due to cost and resource constraints. We developed and validated a deep learning-based classifiers to detect mismatch repair-deficient status from routine colonoscopy images. We obtained the colonoscopy images from the imaging database at Endoscopic Center of the Sixth Affiliated Hospital, Sun Yat-sen University. Colonoscopy images from a prospective trial (Neoadjuvant PD-1 blockade by toripalimab with or without celecoxib in mismatch repair-deficient or microsatellite instability-high locally advanced colorectal cancer) were used to test the model. A total of 5226 eligible images from 892 tumors from the consecutive patients were utilized to develop and validate the deep learning model. 2105 colorectal cancer images from 306 tumors were randomly selected to form model development dataset with a class-balanced approach. 3121 images of 488 proficient mismatch repair tumors and 98 deficient mismatch repair tumors were used to form the independent dataset. The model achieved an AUROC of 0.948 (95% CI 0.919-0.977) on the test dataset. On the independent validation dataset, the AUROC was 0.807 (0.760-0.854), and the NPV in was 94.2% (95% CI 0.918-0.967). On the prospective trial dataset, the model identified 29 tumors among the 33 deficient mismatch repair tumors (87.88%). The model achieved a high NPV in detecting deficient mismatch repair colorectal cancers. This model might serve as an automatic screening tool.
Read full abstract